300 Series—austenitic chromium-nickel alloys
Type 301—highly ductile, for formed products. Also hardens rapidly during mechanical working. Good weldability. Better wear resistance and fatigue strength than 304.
Type 302—same corrosion resistance as 304, with slightly higher strength due to additional carbon.
Type 303—free machining version of 304 via addition of sulfur and phosphorus. Also referred to as "A1" in accordance with ISO 3506.[6]
Type 304—the most common grade; the classic 18/8 stainless steel. Outside of the US it is commonly known as "A2 stainless steel", in accordance with ISO 3506 (not to be confused with A2 tool steel).[6]
Type 304L—same as the 304 grade but lower carbon content to increase weldability. Is slightly weaker than 304.
Type 304LN—same as 304L, but also nitrogen is added to obtain a much higher yield and tensile strength than 304L.
Type 308—used as the filler metal when welding 304.
Type 309—better temperature resistance than 304, also sometimes used as filler metal when welding dissimilar steels, along with inconel.
Type 316—the second most common grade (after 304); for food and surgical stainless steel uses; alloy addition of molybdenum prevents specific forms of corrosion. It is also known as marine grade stainless steel due to its increased resistance to chloride corrosion compared to type 304. 316 is often used for building nuclear reprocessing plants. 316L is an extra low carbon grade of 316, generally used in stainless steel watches and marine applications, as well exclusively in the fabrication of reactor pressure vessels for boiling water reactors, due to its high resistance to corrosion. Also referred to as "A4" in accordance with ISO 3506.[6] 316Ti includes titanium for heat resistance, therefore it is used in flexible chimney liners.
Type 321—similar to 304 but lower risk of weld decay due to addition of titanium. See also 347 with addition of niobium for desensitization during welding.